

# VALUETOX

# Unique service to accompany the Excential toxin binder range

Mycotoxin contamination in feed negatively affects animal health and performance. Therefore, the inclusion of a broad spectrum mycotoxin adsorbent in the feed to alleviate this threat is generally considered as the way to go. However, not all commercial mycotoxin binders function equally good in adsorbing mycotoxins. Analysing the binding efficacy of your mycotoxin binder is therefore considered an essential step towards fighting the threat of mycotoxins in feed!

## WHY BINDING EFFICACY?

In collaboration with the **Centre** of Excellence in Mycotoxicology and Public Health at the



**University of Ghent (Belgium)**, Orffa set-up an *in vitro* model to test different commercial mixtures on their capacity to bind mycotoxins (%). The model is based on liquid chromatography with tandem mass spectrometry (LC-MS/MS).

Mycotoxins included in the test are aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins (FUMB1, FUMB2), zearalenone (ZEN), ochratoxin A (OTA), enniatin B (ENN B) and trichothecenes (DON, HT-2, T-2).

In order to resemble conditions throughout the entire gastrointestinal tract, the binding capacity of the compounds is tested at pH 3 (simulating the stomach) after which pH is raised to pH 7 (simulating the intestinal environment). After the LC-MS/MS, the binding efficacies (%) are calculated.

|                 |       | % binding capacity |               |               |               |               |               |       |
|-----------------|-------|--------------------|---------------|---------------|---------------|---------------|---------------|-------|
| Components - pH |       | TOXBINBS<br>A      | TOXBINBS<br>B | TOXBINBS<br>C | TOXBINBS<br>D | TOXBINBS<br>E | TOXBINBS<br>F | Q.C.* |
| DON             | pH3   | 32                 | 11            | 20            | 44            | 6             | 28            | 94    |
|                 | pH3-7 | 22                 | 16            | 8             | 46            | 10            | 32            | 98    |
| HT-2            | pH3   | 49                 | 18            | 70            | 52            | 17            | 39            | 98    |
|                 | pH3-7 | 61                 | 30            | 58            | 75            | 24            | 59            | 99    |
| T-2             | pH3   | 44                 | 39            | 93            | 33            | 43            | 12            | 98    |
|                 | pH3-7 | 32                 | 25            | 85            | 41            | 28            | 19            | 98    |
| AFB1            | pH3   | 100                | 100           | 100           | 100           | 100           | 100           | 100   |
|                 | pH3-7 | 99                 | 99            | 100           | 100           | 100           | 100           | 100   |
| AFB2            | pH3   | 99                 | 100           | 98            | 99            | 100           | 99            | 100   |
|                 | pH3-7 | 98                 | 99            | 99            | 97            | 100           | 98            | 100   |
| AFG1            | pH3   | 100                | 100           | 100           | 100           | 100           | 100           | 100   |
|                 | pH3-7 | 99                 | 100           | 100           | 98            | 100           | 99            | 100   |
| AFG2            | pH3   | 99                 | 99            | 99            | 96            | 99            | 96            | 99    |
|                 | pH3-7 | 96                 | 98            | 100           | 84            | 96            | 91            | 100   |
| FUM B1          | pH3   | 16                 | 94            | 98            | 0             | 96            | 0             | 97    |
|                 | pH3-7 | 64                 | 43            | 97            | 31            | 63            | 0             | 100   |
| FUM B2          | pH3   | 0                  | 74            | 84            | 0             | 82            | 0             | 79    |
|                 | pH3-7 | 82                 | 62            | 99            | 70            | 77            | 35            | 99    |
| ΟΤΑ             | pH3   | 54                 | 91            | 99            | 66            | 86            | 49            | 100   |
|                 | pH3-7 | 19                 | 22            | 68            | 19            | 33            | 5             | 100   |
| ZEN             | pH3   | 78                 | 76            | 100           | 52            | 63            | 30            | 99    |
|                 | pH3-7 | 69                 | 61            | 99            | 46            | 52            | 22            | 100   |
| ENN B           | рНЗ   | 98                 | 96            | 94            | 94            | 97            | 94            | 96    |
|                 | pH3-7 | 96                 | 98            | 100           | 96            | 100           | 96            | 100   |

#### Figure 1: Example of results

(\*) the positive control binder met the expected results

• <10%: no significant binding

50-89%: partial binding

<sup>10-49%:</sup> limited binding
>90%: complete binding



# **Engineering Feed Solutions**

#### VALUETOX SERVICE MODEL



Code D

Code C

## EXTENSIVE EXPERIENCE

Code A

Orffa has been involved in the *in vitro* comparison of binding efficacy for more than 60 commercial available mycotoxin products, including well-known premium products.

Code B

Results show how different commercial mycotoxin binders differ in their binding efficacy, allowing the customer to independently choose the best product.

## VALUETOX SERVICE

- **Benchmark service** to compare efficacy of mycotoxin binders based on binding efficacy
- In collaboration with the University of Ghent, Belgium
- Broad experience with a wide range of commercial products
- Independent evaluation to support choosing the best mycotoxin adsorbent!





Code E

Code F

'In 2018, when we introduced Excential Toxin Plus and Excential Toxin A in the Philippines, we faced significant challenges. The market was saturated with various toxin binder products, both imported and local, from high-end to low-end brands. These established products were considered 'household names,' making it tough to gain market share. Additionally, larger companies offered marketing incentives like sponsorships, technical services, and after-sales support. To introduce our new products on the market, we implemented an effective strategy: blind in vitro tests using coded samples of our Excential toxin binders alongside customers' existing mycotoxin binders. The University of Ghent provided official reports, and our product's success was evident when customers started ordering.'

Joan Serrano, Country Manager Philippines



## **Engineering Feed Solutions**